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1 Proofs of Interpolation Theorems

1.1 Proof of the Marcinkiewicz interpolation theorem
Last time, we introduced Hunt’s interpolation theorem.

Theorem 1.1 (Hunt’s interpolation theorem). Let 1 < p1,p2,q1,q2 < oo with p; < py and
q1 # q2. Assume that T is a sublinear map satisfying | T f|| pao S ||f||*ij71 for 5 =1,2.
Then, for any 1 <r < oo and 6 € (0,1), we have
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Before proving this, we will prove the Marcinkiewicz interpolation theorem as a corol-
lary.

Corollary 1.1 (Marcinkiewicz interpolation theorem). Let 1 < p; < q1 < o0 and 1 <
P2 < g2 < 0o with p1 < po and q1 # qo. Let T be a sublinear map that satisfies
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Then for any 6 € (0,1), T is of strong type (pg,qp), where
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Proof. As p; < q1 and pa < g2, we get pg < gg for all 6 € (0,1). If p; < p2, Hunt’s theorem

yields
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Taking r = gy, we get
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Assume now that p; = ps =: p. Then
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Similarly,
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We now have

Say q1 < go.
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1.2 Proof of Hunt’s interpolation theorem

Now let’s prove Hunt’s interpolation theorem. Recall that if 1 < p,q < oo, T is of restricted
weak type (p, q) if
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for every finite measure set F'. We saw that this is equivalent to
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Proof. Claim: It suffices to prove Hunt for 1 < p1,p2,q1,¢q2 < 0.
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Indeed, for any 6 € (0,1), even if p; = 1 and g1 = o0, py € (1,00). So we can use an
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interpolation argument with a slightly modified p; and ps: It suffices to see that
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Indeed, for every



for all finite measure sets I'. We have
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Henceforth, we assume 1 < p1,p2, q1,q2 < oo. We can write
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so it’s enough to show that
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By splitting into real and imaginary parts (and then positive and negative parts), we may
assume f,g > 0. We may also assume g = > 2™1p , where E,, are measurable and
pairwise disjoint. Caution: As T need not have monotonicity properties, we may not
assume f is a simple function.

Using the binary expansion, we write

flz) = ZZ"an(:v), an(z) € {0,1}.

Note that there exists a largest n(z) such that a,) = 1 and a,(x) = 0 for all n > n(z).
Also, we don’t allow recurrent 1s. Let {ng(z)}x>1 be a decreasing sequence such that
O, (z)(7) = 1 and all other a,(z) = 0. Then
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For £ > 1, let fy(z) = 2™(*). We can write
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As LPo" is a Banach space, then ) ,o, fr = f in LPo".
Now we can tackle the bound:
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We will show that this is < 1 next time.
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